Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

What's the equation of kinetic energy of charged particle?

+1
−1

I was looking for equation of motion. I came up with a solution but it doesn't satisfy me. Cause I was trying to find motion of that particle using Lagrangian. We know that $$W=\int \vec F\cdot d\vec l$$

$W=T$ for some cases and I came up with $T=qV$. In Euler-Lagrange, kinetic energy has velocity as function, in $T=qV$ there's no velocity directly, the equation actually tells me that particle is gaining kinetic energy from potential (more precisely, potential is converting into kinetic). At first sight, I wrote that $T=\frac{1}{2}m\ddot{r}^2$ what if particle is massless(?) so it's not very helpful. Where I took $$L=0.5m\ddot{r}^2-\frac{1}{4\pi\epsilon_0}{q}{r}$$ if I try solve Euler-Lagrange using that Lagrangian then I get $m\ddot{r}=\vec E$. How force is equal to electric field? It totally doesn’t make any sense to me, their dimension doesn't match either. None of these equation satisfy me. what I think that is I got wrong result for taking kinetic energy which doesn’t apply to charged particle. So what's the kinetic energy of charged particle?

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

2 comment threads

Define your variables. (2 comments)
What's the kinetic energy of a massless particle? (3 comments)

1 answer

+0
−0

Kinetic energy of any particle (who has mass) is $$T=\frac{1}{2} m\ddot{x}^2$$

OP had took potential as potential energy, that was wrong. $$U=-\int \vec F\cdot d\vec l $$ For the case, The force was $$F=\frac{1}{4\pi\epsilon_0} \frac{Qq}{r^2}\hat r$$

So the lagrangian is $$L=\frac{1}{2}m\dot{x}^2-\frac{1}{4\pi\epsilon_0} \frac{Qq}{r}$$ Now you can get a satisfied answer.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.

0 comment threads

Sign up to answer this question »