Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs

Dashboard
Notifications
Mark all as read
Q&A

What's the equation of kinetic energy of charged particle?

+1
−0

I was thinking to find kinetic energy for a charged particle. I came up with a solution but it doesn't satisfy me. Cause I was to find motion of that particle using Lagrangian. We know that $$W=\int \vec F\cdot d\vec l$$

$W=T$ for some cases and I came up with $T=qV$. In Euler-Lagrange, kinetic energy has velocity as function, in $T=qV$ there's no velocity directly, the equation actually tells me that particle is gaining kinetic energy from potential (more precisely, potential is converting into kinetic). At first sight, I wrote that $T=\frac{1}{2}m\ddot{r}^2$ I told me what if particle is massless(?) so it's not very helpful and if I look solve Euler-Lagrange using that kinetic energy then I get $m\ddot{r}=\vec E$ it's totally wrong, their dimension doesn't match. None of these equation satisfy me. So what's the equation of kinetic energy of a charged particle?

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

What's the kinetic energy of a massless particle? (3 comments)

0 answers

Sign up to answer this question »

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!

Like what we're doing? Support us! Donate