Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Would we need Alternating Current if superconducting wires existed?

+4
−2

The major advantage of Alternating Current is that it can be transmitted to large distances without significant losses, which is not possible in Direct Current.

Had economical superconducting wires existed, DC could be transmitted to any distance without any loss, and DC is much safer compared to AC.

So, I want to know, do we need AC if long distance transmission is no longer a problem because of superconducting wires?

Would DC be better in that case, or we would still need AC?

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

General comments (3 comments)

2 answers

You are accessing this answer with a direct link, so it's being shown above all other answers regardless of its score. You can return to the normal view.

+6
−0

The major advantage of AC is that is can be easily transformed to different voltages. This is important because current transport is most efficient if the currents are low (because the losses are proportional to the square of the current), and this is achieved by making the voltage high for transmission (the transmitted power is the product of current and voltage; by making the voltage higher, you need less current to transmit the same power). On the other hand we don't want very high voltage at the point of use (because high voltage is dangerous, no matter whether AC or DC).

Actually for the transport itself, DC would be better (however AC power transmission networks use the frequency to guide the power generation; when using DC, this has to be replaced by a separate mechanism).

Now the question is what would change if we had practicable superconducting wires.

It would be even more important to send only small currents. This is because superconductors lose their superconductivity if the current gets too large. However type II superconductors (this is the type which has high critical temperatures, and therefore is the one you'd expect in superconducting wires) exhibit losses under AC current, and since lossless current transport is the whole point of using superconducting wires for power transmission, this means we would likely use high voltage DC transmission.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.

0 comment threads

+3
−4
The major advantage of Alternating Current is that it can be transmitted to large distances without significant losses, which is not possible in Direct Current.

This is incorrect

Answering the rest of your question is pointless since it is based on a false premise. Instead, I'll elaborate why your statement is wrong.

Advantages of transmitting DC versus AC:

  1. No skin effect. The entire cross-sectional area of the conductor is used all the time. This means more DC current can be pushed thru the same wires for the same resistive loss compared to AC current.
  2. Inductance of the transmission line matters much less. The inductance only gets in the way when you try to change the current. In DC systems, this only due to changes in the load. In AC systems it is also due to deliberately changing the direction twice per cycle. This hugely dominates current changes caused by load changes.
  3. No radiation effects. Long multi-100 km transmission lines are a non-negligible fraction of a wavelength. If care isn't taken, these can radiate power into space. This is usually dealt with by twisting the wires every few km. That balances out, which in theory nulls out, the losses between the three phases.
  4. No phase synchronization problems. When distances are significant parts of a wavelength, the phase shift caused by the distance matters when you try to combine the power from multiple transmission lines or between different parts of the same grid. If the phases don't match closely, you get large and wasteful loop currents.
  5. The maximum voltage is the RMS voltage. Each transmission line has some maximum voltage is can handle. With DC, you can set the voltage to this maximum. With AC, the voltage is a sine. The peak of the sine can't exceed the maximum the transmission line can handle, but it's the RMS voltage that matter for power transfer. Since the RMS of a sine is 1/sqrt(2) of its peak, AC systems can only run at about 71% of the DC voltage that the same transmission line could carry.

DC started getting real use a few decades ago for long hauls. One example is the DC line starting at large dams in northern Quebec, extending about 1000 miles to Ayer Massachusetts. There the power is converted to AC and dumped onto a regional transmission line.

Due to advances in converting from DC to AC (the major drawback of DC transmission), we are seeing DC become economical for shorter and shorter runs.

DC is much safer compared to AC

This is also a false assumption.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.

1 comment thread

General comments (5 comments)

Sign up to answer this question »