Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Magnetization as a function of temperature in ferromagnets

+2
−0

Suppose a ferromagnetic material with initial magnetization $M_o$.Is there some specific formula which calculates the total magnetization $M$ as a function of $M_{o}$ and the Curie temperature $T_{c}$?

History
Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

0 comment threads

1 answer

+1
−0

The most famous formula of this kind is Bloch's $T^{3/2}$ law: $$M(T)=M_0 \left( 1-\left(\frac{T}{T_c}\right)^{3/2}\right)$$ It is a low-order approximation for the spontaneous magnetization in isotropic ferromagnets at low temperatures. It works well for systems like gadolinium, but is not accurate for systems with strong magnetic anisotropy. It also fails near $T_c$, where criticality instead produces $$M(T) \propto \left( T - T_c\right)^\beta,$$ with $\beta$ a critical exponent whose value depends on the universality class. Of course, for $T>T_c$ the spontaneous magnetization vanishes.

History
Why does this post require moderator attention?
You might want to add some details to your flag.

0 comment threads

Sign up to answer this question »