Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

71%
+3 −0
Q&A How can the kinetic energy equation be intuitively understood?

Your analysis seems pretty good. To take an equivalent but more traditional example, imagine we throw a ball upwards. Ignoring air resistance and approximating the gravitational force as constant, ...

posted 3y ago by Derek Elkins‭  ·  edited 3y ago by Derek Elkins‭

Answer
#2: Post edited by user avatar Derek Elkins‭ · 2021-12-14T11:33:21Z (about 3 years ago)
  • Your analysis seems pretty good. To take an equivalent but more traditional example, imagine we throw a ball upwards. Ignoring air resistance and approximating the gravitational force as constant, the ball will accelerate downward with constant acceleration. If the initial (upwards) velocity is $v_0$ and the downward acceleration is $a=-g$, the ball will reach the apex at time $t = v_0/a$ at which point it will have zero velocity and thus zero kinetic energy. It will have traveled a distance of $v_0^2/(2a)$. In general, work is force applied over a distance. In this case, the work done by the gravitational field is the (constant) force, $F = -mg$, applied over this distance, i.e. $mv_0^2/2$.
  • Moving more towards your analysis, once we fix a constant force (and constant mass), then we know work is directly proportional to the distance the mass travels, i.e. $W=Fd$. Your analysis shows that $d$ is quadratic in the initial velocity, thus work is quadratic in the initial velocity. I believe this was your goal. The slightly more detailed analysis in the previous paragraph will reproduce exactly the kinetic energy expression if you wanted more.
  • Your analysis seems pretty good. To take an equivalent but more traditional example, imagine we throw a ball upwards. Ignoring air resistance and approximating the gravitational force as constant, the ball will accelerate downward with constant acceleration. If the initial (upwards) velocity is $v_0$ and the downward acceleration is $a=-g$, the ball will reach the apex at time $t = v_0/a$ at which point it will have zero velocity and thus zero kinetic energy. It will have traveled a distance of $v_0^2/(2a)$. In general, work is force applied over a distance. In this case, the work done by the gravitational field is the (constant) force, $F = -mg$, applied over this distance, $v_0^2/(2a)$, giving a work done of $mv_0^2/2$.
  • Moving more towards your analysis, once we fix a constant force (and constant mass), then we know work is directly proportional to the distance, $d$, the mass travels, i.e. $W=Fd$. Your analysis shows that $d$ is quadratic in the initial velocity, thus work is quadratic in the initial velocity. I believe this was your goal. The slightly more detailed analysis in the previous paragraph will reproduce exactly the kinetic energy expression if you wanted more.
#1: Initial revision by user avatar Derek Elkins‭ · 2021-12-14T11:28:57Z (about 3 years ago)
Your analysis seems pretty good. To take an equivalent but more traditional example, imagine we throw a ball upwards. Ignoring air resistance and approximating the gravitational force as constant, the ball will accelerate downward with constant acceleration. If the initial (upwards) velocity is $v_0$ and the downward acceleration is $a=-g$, the ball will reach the apex at time $t = v_0/a$ at which point it will have zero velocity and thus zero kinetic energy. It will have traveled a distance of $v_0^2/(2a)$. In general, work is force applied over a distance. In this case, the work done by the gravitational field is the (constant) force, $F = -mg$, applied over this distance, i.e. $mv_0^2/2$.

Moving more towards your analysis, once we fix a constant force (and constant mass), then we know work is directly proportional to the distance the mass travels, i.e. $W=Fd$. Your analysis shows that $d$ is quadratic in the initial velocity, thus work is quadratic in the initial velocity. I believe this was your goal. The slightly more detailed analysis in the previous paragraph will reproduce exactly the kinetic energy expression if you wanted more.