Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics

Dashboard
Notifications
Mark all as read
Q&A

Interaction terms in Srednicki's proof of spin-statistics theorem

+2
−0

In Srednicki's proof of the spin-statistics theorem for scalar fields ("Quantum Field Theory", section 4), he considers interaction terms, added to the free Hamiltonian, that are Hermitian functions of $$\phi^+(x)=\int\frac{d^3k}{(2\pi)^32\omega}e^{ikx}a(\mathbf{k})$$ and $$\phi^-(x)=\int\frac{d^3k}{(2\pi)^32\omega}e^{-ikx}a^\dagger(\mathbf{k}).$$ He then goes on to show that we will only get Lorentz-invariant transition amplitudes if we are dealing with the theory for a real scalar field obeying Bose-Einstein statistics.

Question: Why do we only need to consider interaction terms that are functions of $\psi^+$ and $\psi^-$? Couldn't there be other possible interaction terms? For example, $H_1=a^\dagger(\mathbf{k})+a(\mathbf{k})$?

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

0 comments

0 answers

Sign up to answer this question »

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!